从0构建大型AI“推荐”:系统 排序模、型产品化的关键环节

2025-07-21 10:11:09      来源:大河报

构建大型AI推荐系统时,将排序模型从技术推向实际产品环境是核心挑战。产品经理需要深度参与并主导多个关键环节,确保技术能力有效转化为用户价值和业务成果。

一、特征工程需求定义

产品经理在定义用户与场景的特征需求时,需要以业务目标为导向,清晰描述所需的数据维度,并明确其在产品中的意义和价值。

用户画像通常需要覆盖多个层面:

基础属性:包括年龄、地域、设备类型等相对静态的信息。例如,明确“一线城市25-35岁白领女性”这一画像标签,在电商场景中可能关联到特定的品类偏好(如母婴、美妆)。

行为特征:涵盖用户近期的动态数据,如点击、收藏、加购行为序列,以及跨端(APP/小程序/H5)的使用习惯。需求中需明确这些数据的采集频率(如实时更新、每日聚合)和存储粒度(如按用户、按会话)。

心理需求:通过分析用户评论、客服对话等文本数据(通常借助NLP技术),识别用户潜在的深层需求(如“追求健康生活”、“渴望自我提升”),并建立这些需求与商品/内容类目的映射关系(例如,健身器材映射到健康生活需求)。

上下文特征的设计应紧密围绕用户所处的具体环境及其行为路径:

时间维度:区分工作日/周末、早晚高峰等时段特征。例如,在通勤场景下,系统可能倾向于推荐轻量级内容(如新闻摘要、短视频);而在周末,则可能侧重深度内容(如长视频、知识课程)。

空间维度:利用GPS、Wi-Fi定位数据,理解用户所处的典型位置(如家、公司、商圈)。例如,当用户在商圈时,系统可推荐周边的餐饮、娱乐等地点信息。

交互维度:实时捕捉用户与界面的细微互动,如滑动速度、内容停留时长。这些数据可用于动态调整推荐策略,例如在用户快速滑动时降低推荐内容的复杂度。

二、模型目标设定

排序模型的目标需要系统性地平衡短期商业目标和长期用户体验。采用主目标结合辅助目标的分层策略是常见做法:

主目标:选择与核心业务KPI直接强相关的指标,例如电商场景的GMV、内容平台的视频完播率。需求中必须明确定义指标的计算口径(例如,GMV是否包含退款订单)和数据来源(如来自支付系统还是订单系统)。

辅助目标:引入影响长期价值的指标,如用户满意度、推荐结果的多样性。具体措施可包括:控制相似内容/商品的推荐比例(如单一品类占比不超过30%以提升探索性);设置“用户活跃度衰减系数”,动态调整用户近期行为和历史行为在模型中的权重占比。

多目标权重的分配是一个动态调优的过程:

初始设定:基于业务经验和历史数据设定基础权重(例如:点击率60%、转化率30%、停留时长10%)。

动态调整:利用在线学习机制,实时响应用户反馈数据。例如,当监测到某类内容的点击率上升但转化率显著下降时,系统可自动调低点击率目标的权重(如降低5%-10%)。

约束条件:设置硬性规则防止模型偏向极端,如限制特定品类的最大推荐占比(如≤40%)。同时,可引入“公平性”考量,通过技术手段确保不同用户群体(如新老用户、不同地域用户)获得推荐的覆盖差异不超过一定阈值(如

三、Badcase分析机制

建立系统性的Badcase分析闭环是保障推荐质量的关键:

问题识别与采集

通过埋点日志持续监控推荐结果和用户反馈。

定义核心的Badcase类型,例如:

低质内容:如标题党信息、短时间内对同一商品/内容的重复推荐(如≥3次)。

兴趣不匹配:用户连续多次(如5次)点击的内容均未出现在系统推荐列表的前列位置(如前10位)。

体验问题:用户明确表达不感兴趣后系统仍重复推荐、推荐结果加载时间过长(如>3秒)。

根因定位

召回层检查:分析内容库是否存在覆盖不足的问题(如某类目下的内容覆盖率

排序层诊断:检查模型预测分数(如预估点击率、转化率)与实际用户行为(真实点击、转化)之间的偏差,识别预估误差显著的样本(如点击率预估误差>20%)。

策略层验证:排查后续的重排规则、保量策略等是否导致低质或低相关性内容获得了过高的曝光位置。

问题解决与迭代

快速响应:实施规则性解决方案进行止损,例如对用户明确负反馈的内容进行短期屏蔽(如7天内不再推荐)。

长期优化:将典型的Badcase样本加入模型训练数据,驱动特征工程的改进(如新增“用户负反馈次数”特征)或模型结构的升级(如引入对比学习机制提升对难分样本的区分能力)。

四、产品化核心要素

将算法能力转化为用户可感知的价值,关键在于设计:

可解释的推荐呈现

理由标签体系构建:

基础型:“您关注过的品牌”、“同类用户也喜欢”。

场景型:“通勤时段热门内容”、“周末家庭活动推荐”。

价值型:“用户评价高分精选”、“近期价格优惠”。

标签展示策略:

首页:可采用“1+3”模式,突出一个主要推荐理由,辅以少量(如3个)次要理由标签。

详情页:采用渐进式揭示,初始展示简洁理由,用户停留较长时间(如>10秒)后可触发展示更详细的分析(如“该商品与您收藏的连衣裙在风格匹配度上达到85%”)。

用户价值显性化

构建“个性化指数”,综合推荐准确性、多样性、新颖性等指标,为用户生成一个直观的“推荐体验分”(如1-10分)。

在用户个人中心等场景,可视化呈现推荐系统带来的价值,例如“本月通过推荐发现的新喜好”、“为您节省的筛选决策时间估算”。

用户反馈与参与

轻量反馈:在推荐结果旁设置便捷的“喜欢/不喜欢”按钮,点击后可展开二级选项(如“不感兴趣”、“已购买”),确保反馈能实时回流更新用户画像。

主动探索:提供类似“推荐探索实验室”的功能,允许用户主动调整推荐偏好(如“增加科技类内容”、“减少广告推荐”),并可对比不同偏好设置下的推荐结果差异。

五、产品经理的关键角色

将大型AI推荐系统中的排序模型成功产品化,核心在于产品经理有效扮演“翻译”和“桥梁”的角色:

需求定义阶段:用清晰、无歧义的业务语言定义技术需求,确保技术团队准确理解业务意图(例如,明确定义“用户活跃度”的具体计算规则:“近7天内登录≥3次且内容点击≥10次”)。

模型开发与调优阶段:深刻理解业务目标(如GMV)如何由技术指标(如点击率、转化率、客单价)共同构成(GMV=点击率×转化率×客单价),并推动模型优化方向与业务目标对齐。

产品落地阶段:主导设计可解释性功能和用户价值可视化方案,让用户理解推荐逻辑,从而建立对系统的信任,最终促进用户价值的转化(如点击、转化、留存)。

推荐系统的产品化是一个持续的迭代过程,需要产品经理深度理解技术和业务,将算法能力无缝融入用户旅程和业务流程,才能最大化其商业价值并提升用户体验。

  钟自然严重违反党的政治纪律、组织纪律、廉洁纪律和生活纪律,构成严重职务违法并涉嫌受贿、故意泄露国家秘密犯罪,且在党的十八大后不收敛、不收手,性质严重,影响恶劣,应予严肃处理。

责编:钞好编辑

上蚂蚁保选刘亦菲的好医保

  国泰航空之前已在内地开通19个航点,但这次格外用心,为乌鲁木齐航线专门投放了配备可全平躺商务舱座椅的A330-300宽体机,在机载娱乐系统加入了《我的阿勒泰》,商务舱酒单上还出现了新疆产的红酒。

保护情绪和保护健康一样重要

  河南省气候中心6月12日8时发布干旱橙色预警,根据最新气象干旱监测显示,安阳、鹤壁、焦作、开封、洛阳、漯河、南阳、平顶山、濮阳、商丘、新乡、信阳、许昌、郑州、周口、驻马店等16个地市72个国家级气象站监测到气象干旱达到重旱等级以上,并已持续10天。据天气部门预报,6月24日之前,全省将维持高温晴热天气,虽然部分时段有分散对流性降水,但无法有效缓解旱情。

宋佳陈龙

  北京、上海、广州是3大全方位门户复合型功能的国际航空枢纽,成都、深圳、重庆、昆明、西安、乌鲁木齐、哈尔滨是7大区位门户复合型功能的国际航空枢纽。

赖冠霖导演短剧

  因此在不断强化税收征管的同时,应该同步适度推进税制改革,适度降低名义税率,让企业实际税负维持在一个合理水平,同时国家财政收入也并不会由此减少,进而实现良性循环。

李晟被泼李佳航坐不住了

  “实际上就是‘打样’。”李瀚明认为,国泰开航证明了乌鲁木齐机场具备保障顶级航司的能力,会产生示范效应。国泰飞得好,其他国际顶级航司,以及东亚、东南亚的航司都会考虑跟进。除了证明机场的保障能力,也是新疆以此为契机,对外释放开放活力的强烈信号。

吴彦祖请人喝古茗咖啡

  尽管中国并未采取集中清缴清欠税收等行动,但随着税收大数据广泛应用,网状、系统性税收风险分析取代了此前个人经验点对点分析,税收征管力度事实上在不断强化,税收征收率在不断提高。以前企业偷漏税可能不容易被发现,但近些年通过税收大数据,税务部门会收到企业风险提示,并跟企业确认,不少企业需要依法补缴税款。/p>

保护情绪和保护健康一样重要

  携程集团副总裁秦静认为,随着这一政策的施行,将加速中国与澳大利亚之间的旅游交流及经贸互动。同时,政策也将惠及在澳大利亚生活的逾百万华人华侨,使得他们回国探亲或旅游的过程更为简便顺畅。秦静指出,作为亚太地区的重要国家,中国与澳大利亚在经济上具有高度的互补性,合作潜力巨大,未来也期盼在旅游领域激发更强劲的合作动力。/p>

鹿晗红帽素颜彩排照

  中国名义税负一直高于实际税负。所谓名义税负是指企业名义上该缴纳的税费。由于征管、企业对税法理解等原因,实际上企业不一定足额缴纳法律意义上的税费。